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Many nonlinear lattice systems exhibit high-amplitude localized structures, or discrete breathers. Such
structures emerge in the discrete nonlinear Schrödinger equation when the energy is above a critical threshold.
This paper studies the statistical mechanics at the transition and constructs the probability distribution in the
regime where breathers emerge. The entropy as a function of the energy is nonanalytic at the transition. The
entropy is independent of the energy in the regime of breathers above the transition.
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I. INTRODUCTION

Localized high-amplitude structures, or discrete breathers,
are observed in such diverse discrete nonlinear systems as
microcantilevers �1�, networks of Josephson junctions �2�, in
molecular dynamics �3�, crystal lattice vibrations �4�, and in
antiferromagnetic spin wave dynamics �5�. It is a question
both of practical and of fundamental interest why energy is
persistently stored by localized nonlinear modes of spatially
discrete systems.

An important example of an equation of motion with
breather solutions is the discrete nonlinear Schrödinger equa-
tion

i�̇n = J��n+1 + �n−1� + ��n�2�n. �1�

This equation has important applications in coupled optical
waveguides �6� and in the dynamics of Bose-Einstein con-
densates trapped in periodic potentials �7�. The discrete non-
linear Schrödinger equation derives as i�̇n=�E /��n

� from the
Hamiltonian E=E2+E4=�nJ�n

���n+1+�n−1�+ 1
2�n�n

2�n
�2.

The wave action A=�n��n�2 is a second conserved quantity,
which is due to the phase symmetry of Eq. �1�.

The dynamics of Eq. �1� is radically different in two re-
gimes that depend on the two conserved quantities E and A.
Figure 1�a� shows the probability density function and a
snapshot of ��n�2 in the regime where breathers do emerge.
The initial condition for the simulation is almost homoge-
neous in space, with low amplitudes �n�0.3. A few local-
ized high-amplitude breathers emerge during the time evolu-
tion. These peaks are inert for any achievable long-time
simulation. The peaks appear as a hump in the probability
density function p����2� at ���2�4.5. Most of the probability,
however, is at low amplitudes ���2�1, corresponding to dis-
ordered low-amplitude waves.

Figure 1�b� shows data for the regime where no breathers
emerge. The initial condition is a low-amplitude wave with a
wave number k=� /2. This corresponds to a lower energy E
than Fig. 1�a�. A state of disordered low-amplitude waves
with no high-amplitude peaks develops from this initial con-
dition. The probability density function decays as lnp����2�
�−���2 at all lattice sites, with no hump at higher ampli-
tudes.

Recent studies have shown that discrete breathers are part
of the state of maximum entropy of the discrete nonlinear
Schrödinger equation and other lattices where a second

quantity is conserved in addition to the Hamiltonian �8–11�.
Both the regime with breathers and the regime with no
breathers can be explained with this statistical approach.

The transition from the regime with no breathers to the
breather regime has been attributed to a change of the sign of
the system’s temperature �8�. For the grand canonical distri-
bution function p�exp�−�E−�A�, the transition line �=0 is
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FIG. 1. Numerical results for the discrete nonlinear Schrödinger
equation of N=1024 oscillators with periodic boundary conditions.
The coupling constant is J=1. p����2� is the probability density
function averaged over time and over the lattice sites. The insets
show snapshots of ��n�2 after an integration of 50 000 time units. �a�
High-amplitude peaks with ��n�2�4.5 emerge from a low-
amplitude background for the initial condition �n=0.3 plus weak
noise. The probability density has a hump at high amplitudes that is
due to these peaks. �b� No peaks emerge for the initial condition
�n=0.3 exp�i�n /2� plus weak noise. The probability density func-
tion decays exponentially.
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given by E=A2 /N. The energy in the simulation of Fig. 1�b�
is slightly below this threshold. An energy below the thresh-
old corresponds to ��0 so that the grand canonical density
decays rapidly as a function of ��n�. The probability for high
amplitude excitations ��n�2�1 is extremely low.

The simulation of Fig. 1�a� with breathers corresponds to
an energy E�A2 /N above the threshold. The problem with
the statistical description of this regime is that no grand ca-
nonical distribution yields a finite energy E�A2 /N. In par-
ticular, the grand canonical density diverges at high ��n�
when � is negative.

References �9,10� address the statistics in the breather re-
gime with a fixed energy and wave action. The high-
amplitude breathers and the low-amplitude phonon waves
are considered as two interacting thermodynamic systems.
Most of the entropy is due to the phonons, and very little
entropy is due to the breathers. The system’s entropy is
maximal if the right amount of energy is allocated to the
phonons. Breathers emerge when the total energy is above
the amount that is required by the phonons. This surplus of
energy gathers in discrete breathers. This mechanism is
widespread in systems with two conserved quantities �9�.

A number of studies �12,13� concern ensembles that are
canonical in the energy and microcanonical in the wave ac-
tion. This corresponds to a system that is coupled to a heat
bath with a fixed temperature, from which it can draw an
infinite amount of energy �12,14�. Study spatially continuous
nonlinear Schrödinger systems, where the entropy is domi-
nated by the degrees of freedom at infinitesimal length
scales. The state of maximum entropy for a fixed energy and
wave action corresponds to a macroscopic soliton structure
and fluctuations with an infinitesimal amplitude and with in-
finitesimal wavelengths �14�.

This paper is devoted to the transition behavior between
the two regimes and to the regime where breathers exist.
Energy and wave action are set by the initial conditions and
conserved. The probability distribution is derived from the
extremum of entropy with the constraints of fixed energy and
wave action. A simplified discrete nonlinear Schrödinger Eq.
�1� with a weak coupling force J�1 is studied in Sec. II.
These results are extended to the system with a finite cou-
pling strength in Sec. III.

II. ENTROPY IN THE WEAK-COUPLING LIMIT

A. Energy and wave action for weakly coupled oscillators

In this section, Eq. �1� is studied in the limit of weak
coupling J�1. Each oscillator is predominantly governed by
the nonlinear part i�̇n��n��n�2. Most of the energy E�E4 is
stored in the quartic part of the Hamiltonian, whereas the
coupling term E2�O�J� contains only a negligible amount
of energy. The trajectory is confined to the shell of constant
E�E4 and A in phase space.

The weak coupling allows the system to thermalize on
this shell. Each oscillator can transfer energy and wave ac-
tion to the other oscillators, or can receive these quantities.
Correlations between the oscillators are expected to vanish in
the limit of small coupling. The probability density

pN��1 ,�2 , . . . ,�N�=	n=1
N p1��n� factorizes into a product of

densities of the single oscillators �n. Each oscillator is de-
scribed by the same probability density function p1.

The Hamiltonian E4 is invariant under the transformation
�n→�n exp�i�n�. Exploiting this phase symmetry, it is con-
venient to describe the oscillator �n by one radial variable
xn=���n�2	0. A phase space volume element is given by
dxn=�d��n�2. This leads to the probability density p�x� with
the normalization 
0


p�x�dx=1 on a real sample space x	0.
This probability density applies to each single oscillator.

The average wave action per oscillator a=A /N
=�−1
0


p�x�xdx= �x� /� is proportional to the first moment.
The average energy e4=E4 /N=2−1�−2
0


p�x�x2dx
= �x2� / �2�2� is proportional to the second moment.

The range of possible energies at a given wave action a is
bounded from below and unbounded from above. The lowest
possible energy e4�a�=a2 /2 is achieved for the density
p�x�=��x−a�� �Fig. 2�. There is no upper limit of the en-
ergy: For instance, the density p�x�= �1−c���x�+c��x− x̃�
yields a=cx̃ /�. The energy e4=cx̃2 / �2�2�=a2 / �2c� is arbi-
trarily high for any given a when c is small.

B. Grand canonical distribution

The continuous entropy �15,16� related to p�x� is

s�p�x�� = − 

0




p�x�ln�hp�x��dx . �2�

The length scale h is set equal to 1. The entropy of the
system of N oscillators is S=Ns. The equilibrium probability
density yields the highest possible entropy. The density for
the extremal entropy has to be determined with the con-
straints of fixed wave action, energy, and total probability

0


p�x�dx=1. Using the Lagrange multipliers �, �, and �, this
density is given by the extremum of the functional
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FIG. 2. �a� Domains I and II with no breathers and domain III
with breathers in the a-e4 diagram for a single oscillator. The do-
mains are separated by the line e4=a2 with �=0, and e4=�a2 /4
with �=0. The lowest possible energy is e4=a2 /2. Domain I cor-
responds to �
0, ��0, domain II to ��0, ��0. �b� ln p�x�
=ln �−�x at line �=0. �c� ln p�x�=ln�4� /�−�x2 /2 at line �=0.
�d� Peaked density at �=−��1 at the minimum of energy e4

=a2 /2.
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G�p�x�,x� = − 

0




p�x��ln�p�x�� + �x + �x2 + ��dx . �3�

The extremum of G�p�x� ,x� is given by



0




�p�x��ln�p�x�� + 1 + �x + �x2 + ��dx = 0. �4�

This is solved by the grand canonical probability distribution
p�x�=y−1 exp�−�x−�x2�. The partition function is y
=
0


exp�−�x−�x2�dx=exp�1+��. Figures 3�a�–3�c� show
the integrand of Eq. �3� g�p ,x�=−p ln p−�xp−�x2p, for dif-
ferent signs of � and � �the normalization parameter � is
skipped for simplicity�. The grand canonical distribution fol-
lows the ridge �g /�p=0 of g�p ,x�.

The lines �=0 and �=0 split the range of possible ener-
gies e4	a2 /2 into three domains, as shown in Fig. 2. The
domains I and II are associated to the regime where no
breathers emerge, while breathers do appear in domain III.

C. Regime with no breathers

In the domains I and II, the energy is within the band
a2 /2�e4�a2 �Fig. 4�. Equivalently, the second moment is
confined by �x�2� �x2��2�x�2.

Domain I with �
0, ��0 corresponds to low energies
a2 /2
e4
�a2 /4. Figure 3�a� shows that the density in-
creases as a function of x at small x, but decays exponentially
p�x��exp�−�x2� for large x.

Domain II with ��0, ��0 matches the energy band
�a2 /4
e4
a2. Figure 3�b� shows that the probability den-
sity decays exponentially as p�x��exp�−�x2� for high ampli-
tudes x. This exponential decay of the probability makes
high-amplitude peaks extremely unlikely. The border be-
tween the domains I and II corresponds to distributions with

�=0, ��0. The extremum condition �4� is not constrained
by a since the multiplier � is zero. The probability density is
p�x�=2�� /� exp�−�x2�, which yields the relation of energy
and wave action e4�a�=�a2 /4. This distribution provides the
highest entropy that can be achieved when e4 is fixed. No
other distribution with the same value of e4 and with any
value of a yields a higher entropy.

The probability is not constrained by the Hamiltonian
when �=0 with ��0. The probability distribution p�x�
=� exp�−�x� is not a function of the Hamiltonian. This dis-
tribution is achieved on the line e4�a�=a2 �Fig. 2�, which was
first computed in �8�. The entropy at this line is s=1
+ln��a�. No other distribution with the same wave action
leads to a higher entropy.

D. Distribution in the regime with breathers

The line �=0 of Fig. 2 marks the transition to domain III
where high-amplitude structures are found numerically. Do-
main III cannot be described by a grand canonical distribu-
tion: The grand canonical distribution p�x��exp�−�x−�x2�
increases exponentially at large x for �
0 �Fig. 3�c��. The
probability is gathered at infinite x. This leads to an infinite
wave action a and energy e4. Consequently, the energy e4���
has a discontinuity at �=0 where it jumps from a finite value
e4=a2 to an infinite value for �
0 �Fig. 3�d��.

The aim is now to find a distribution p�x� that yields the
maximum entropy for a finite energy within domain III. For
this purpose the probability density is approximated by trial
functions that have a finite first and second moment. The
discontinuity �Fig. 3�d�� at �=0 disappears and the transition
becomes smooth in this approximation. The approximation
can be improved by increasing the number of trial functions.
A discontinuity of the energy emerges again in the limit of an
infinite number of trial functions.

With the ansatz p�x�=q�x�exp�−�x−1−�� the extremum
of the functional �3� is given by



0




�p�x��ln q�x� + �x2�dx = 0. �5�

The solution q�x��exp�−�x2� is ruled out, as it leads to the
divergences of Fig. 3�c�. A finite polynomial trial function
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q�x�=�n=0
m qnx2n ensures that energy and wave action are fi-

nite. The task is to choose coefficients qn that yield the high-
est possible entropy for a finite energy and wave action
within domain III.

The integrand of Eq. �5� is not close to zero for all x when
q�x� is a finite polynomial. For this reason certain variations
�p�x� have to be excluded from Eq. �5�. The solution qn

depends on the variations �p�x� that are admitted. In �17�,
the variation problem was solved with the Ritz method. The
extremum of Eq. �3� with respect to qn was computed nu-
merically.

The finite exponential series approximation

q�x� = �
n=0

m

�− ��nx2n/n! �6�

with �
0 is used in the following. The justification for Eq.
�6� is that it removes all powers up to x2m from Eq. �5�. The
expression ln q�x�+�x2 with Eq. �6� is discussed in the Ap-
pendix for −� small and m large. Figure 9�a� shows that this
function is very small for x
x0=�m / �−e�� and grows as �x2

for x�x0 with �e is Euler’s number�.
Equation �6� solves Eq. �5� approximately when varia-

tions �p�x��0 are admitted only for x
x0. The variations
have to vanish �p�x�=0 for x�x0. In other words, Eq. �6�
yields a probability density that follows the rim of Fig. 3�c�
for x
x0. At very high x, p�x� is below the rim. Figure 5�a�
illustrates this probability density for various small �
0, and
with m=50 and �=1 fixed �lines �ii�–�iv��. These probability
densities are close to the canonical density �line �i��, but they
have a small hump at x�2m=100. The height of this hump
increases when a larger value −� is chosen.

The location x�2m of the hump depends on the order m
of the polynomial �6�. In Fig. 5�b�, the parameters � and m
are changed in that way that humps p�x=2m��m−2�x−2 are

obtained �lines �ii�–�iv��. The corresponding energy densities
x2p�x� have humps of order 1 �Fig. 5�c��. The densities �ii�–
�iv� all yield e4=1. For comparison, the density �i� with �
=0 yields e4=�−2. This shows that the hump provides a sub-
stantial contribution to e4. A formula that yields � as a func-
tion of m, e4, and a is derived in the Appendix. For m large,

��m� = −
e

4�2a2�m−1 + m−2 ln��e4/a2 − 1�
e − 1

�8em2�� �7�

yields a finite energy e4�a2 within domain III �e is Euler’s
number�. When m is finite, a finite energy corresponds to
every finite �
0. Consequently, there is no jump disconti-
nuity of e4 at �=0.

��m�→0 tends to zero in the limit m→
. e4�m ,��m��
converges to a function with a finite jump at �=0. The en-
ergy at the transition is e4��=0�=a2. At the limit from below,
the energy can have any finite value e4�m→
 ,��m�→0−�
�a2. In the same limit, the range x
x0�m where variations
�p�x��0 are admitted goes to infinity. In this range, the
distribution converges to the canonical distribution p�x�
�exp�−�x�. The hump p�x=2m��m−2 moves to infinity,
and decays. So the hump has an infinitesimal probability, but
a finite energy.

The contribution to the wave action and the entropy of the
hump goes to zero in this limit. Figure 5�d� shows the den-
sity of entropy −p�x�ln p�x�. The main contribution to the
entropy is due to small x. The entropy density at the hump as
a function of m decays �m−2 ln m, which becomes negli-
gible for m large.

Consequently, the entropy has the same value s=1
+ln��a� at the transition line �=0 and within domain III.
The entropy as a function of the energy is continuous but not
analytic at the transition. The entropy in domain III is inde-
pendent of the energy, and depends only on a �Fig. 6�.

To conclude this section, the probability distribution in
domain III is almost the same as at the transition line �=0. It
differs only by a tiny hump at a high amplitude �Fig. 5�a��.
This hump corresponds to the high-amplitude peaks that con-
tain a part of the total energy. One may interpret the state in
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domain III as two “phases,” one corresponding to the canoni-
cal density with �=0, ��0, and one corresponding to the
infinitesimal probability at an infinite amplitude. As there is a
jump discontinuity of the energy e4��� at �=0, the transition
is similar to a first order phase transition. However, by ds
=�de4 there is no change of entropy when energy is added to
the system, as the transition occurs at an infinite temperature
�−1.

III. DISTRIBUTION FOR FINITE COUPLING

A. Transition behavior

The problem for the full Hamiltonian with a finite cou-
pling strength J�0 is studied in this section. The boundary
conditions are periodic. It turns out that the results of the
previous section can be applied to this case.

The coupling energy is E2=�i2�−1�xixi+1 cos �i with the
variables xi=���i�2 and cos �i=Re��i�i+1

� � / ��i�i+1
� �. The en-

ergy per lattice site e2+e4=E2 /N+E4 /N is bounded from
below and unbounded from above. The state with the lowest
energy per wave action is a wave with �n+1=−�n. The cou-
pling energy of this wave is E2=−2JA and the quartic energy
is E4=A2 / �2N�. The energy per lattice site is e2+e4=−2Ja
+a2 /2 �lower boundary in Fig. 7�.

The highest energy at a given wave action is achieved for
a peak ��l���A�1 that contains almost the whole wave
action of the system. The amplitudes are very small at all
other sites. This isolated peak has an energy E4�A2 /2, while
the coupling energy is negligible. The average energy per
site e4�Na2 /2 tends to infinity in the limit N→
 with a
fixed. The phase space volume element is d�
= �2��−N	idxid�i. The task is again to find the probability
distribution that yields the maximum entropy
S�p�x1 ,�1 , . . . ,xN ,�N��=−�2��−N
p ln p	idxid�i for a given
total energy and wave action. The variation problem ��S
−��A−�2�2�E2+E4�−�
pd��=0 is now extended by E2.

The grand canonical distribution p=exp�−��A
−�2�2�E2+E4�−1−�� can again be applied to the regime
with �	0. Domain II in Fig. 7 corresponds to ��0 and �
�0. The probability distribution does not factorize in do-
main II. An explicit formula for the partition function and the

entropy in the limit of small a was given in �10�.
At a higher value of the wave action �a=2J outside the

range of Fig. 7, compare Fig. 1 in Ref. �8�� there is a transi-
tion �=0 to domain I, where � is negative. Both in domains
I and II, the probability density decays as p�exp�−�x2� for
high x. High-amplitude structures are extremely unlikely.

The transition line �=0, ��0 is given by e2=0, e4=a2

�8�, which is the same as in the limit of weak coupling. The
probability density factorizes as pN�x1 , . . . ,�N�=	i=1

N p�xi�,
with the same probability density p�xi�=� exp�−�xi� as in
the limit of weak coupling. The distribution at �=0 is inde-
pendent of the Hamiltonian, so the system achieves the high-
est entropy that is possible for this particular value of a.

B. Regime with breathers

High-amplitude breathers do appear for an energy e2+e4
�a2 in domain III �Fig. 7�. The question is which probability
distribution yields the maximum entropy within domain III.
A grand canonical distribution with a negative temperature
�
0 is ruled out since the probability density p
�exp�−�2�2E4� diverges as a function of x.

As in Sec. II, this divergence can be avoided by constrain-
ing the probability distribution to a set of functions with a
finite first and second moment. The ansatz for the probability
density

p�x1, . . . ,�N� = exp�− ��A − �2�2E2 − 1 − ��	
i

q�xi,��

�8�

removes A and E2 from the variation. The variation now
reads 
0


�p�i�ln q�xi�+�xi
2�d�=0. It reduces to Eq. �5� for

each variable xi, which can be solved approximately by the
polynomial ansatz �6�. The approximation can be improved
by increasing m, while ��m� tends to zero by Eq. �7�.

The coupling factor exp�−2�2�E2� becomes negligible
when � goes to zero. It can be shown that

exp�− ��A� 
 exp�− ��A��2��−N

�

0

2�

exp�− 2�2�E2�	
i

d�i,


 exp�− ��� + �4�2�A� . �9�

Similarly, the energy contribution E2�O��� vanishes. For
m→
, ��m�→0−, the density reduces to p�x1 , . . . ,xN�
=	iq�xi�exp�−�xi�, which is the density for the weakly
coupled case. The distribution is independent of the angles
�i.

As a result, in domain III the probability distribution fac-
torizes into the same product for finite coupling and for weak
coupling. In either case, the system contains two phases: One
phase that comprises almost all oscillators, which absorb
nearly the total wave action. The high amplitude phase has
only an infinitesimal share of the probability and the wave
action, but it contains a significant amount of energy.

-1

0

1

0 1

III

II

e +e

e +e =- Ja+a / 22 4

=0

2 4

a

2 2

ǫ

FIG. 7. Domain II with no breathers and domain III where
breathers emerge. The domains are separated by the line e2+e4

=a2, where �=0. Domain II corresponds to ��0, ��0. Domain I
with �
0 appears at higher values of a �compare Fig. 1 in Ref.
�8��.
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C. Comparison to numerical findings

The temperature �−1 of low-amplitude waves can be mea-
sured by computing the power spectrum nk= ��ak�2� with ak

=N−1/2�n�n exp�−ikn�. In equilibrium, a Rayleigh-Jeans dis-
tribution nk= ���k+��−1 is obtained. �k=2J cos k is the fre-
quency of linear waves of the discrete nonlinear Schrödinger
equation. Figure 8�a� shows numerical spectra obtained from
initial conditions �n=0.3 exp�ikn� plus weak noise. The sys-
tem is first integrated over 50 000 time units so that it ap-
proaches its thermal equilibrium. The spectrum is computed
by averaging over another 50 000 time units. The results can
be compared to the matching Rayleigh-Jeans spectra of Fig.
8�b�.

The initial condition with k=0.55� yields a spectrum with
��0, corresponding to domain II. The initial condition with
k=� /2 yields an almost flat spectrum with ��0. This is the
same initial condition as for Fig. 1�b�.

The spatially homogeneous initial condition k=0 corre-
sponds to the simulation of Fig. 1�a�. The energy e2+e4
=2a+a2 /2 is within domain III. The spectrum shows that �
is negative. Another indication for a negative temperature
was observed in Ref. �8�: In Fig. 1�a�, lnp�x� has a slight
curvature at small x. At �=0, it is a straight line �Fig. 1�b��.
The observation of this change of the curvature at the tran-
sition was discussed in detail in �11�.

The finding of a negative temperature of the low-
amplitude waves in domain III is somewhat surprising, as the
equilibrium state corresponds to �=0. In other words, the
system has not yet reached the equilibrium. One would ex-
pect that the breathers continue to grow or to merge into a
smaller number of peaks with a higher amplitude. This
would allow the low-amplitude phase to achieve a flat spec-
trum and a canonical distribution p�x��exp�−�x� that cor-
responds to the maximum of entropy.

However, the numerically observed peaks with the height
���2�4.5 are extremely stable. They do not move and merge
into a smaller number of higher peaks in long-time numerical
integrations.

Three mechanisms appear to stop the process of growth
and merging of breathers. First, breathers of a critical ampli-
tude near ���=2 are pinned at the lattice �18�. The breathers
cannot move and merge into a larger breathers.

Second, the interaction of peaks and low-amplitude waves
becomes very weak when the peaks reach a critical height
�19�. This is due to the disappearance of low-order interac-
tions of waves and high-amplitude breathers. The height
computed in �19� corresponds approximately to the maxi-
mum height of breathers in numerical experiments.

Finally, there is a statistical effect that breathers grow
only if their nonlinear phase frequency is above the chemical
potential of the surrounding waves �20�. This explains why
no new breathers emerge from the disordered waves in the
space between the breathers of �Fig. 1�a��.

IV. CONCLUSIONS

To summarize, the transition between the disordered low-
amplitude regime �Fig. 1�b�� and the regime of high-
amplitude structures �Fig. 1�a�� was studied. The type of be-
havior depends on the system’s two conserved quantities, the
wave action and the energy.

No high amplitude structures emerge if the energy per
lattice site is below the threshold e2+e4�a2 �Fig. 7�. The
distribution in this regime is grand canonical, and the prob-
ability for high-amplitude excitations decays exponentially.

At the transition line e2+e4=a2, the distribution is inde-
pendent of the Hamiltonian since the multiplier � is zero. The
probability factorizes into a product of the distributions of
single oscillators. The phase differences �n of neighboring
oscillators are randomly and equally distributed, and the
power spectrum in wave number space is white �Fig. 8�. The
amplitude of the oscillators is distributed canonically
p����2��exp�−����2� so that no high-amplitude peaks ap-
pear �Fig. 1�b��.

High-amplitude breathers appear at e2+e4�a2 in domain
III above the transition �=0. The probability distribution was
computed from the condition of an extremal entropy. The
probability distribution was constrained to a set of ansatz
functions that yield finite moments for �
0.

The probability distribution in the regime of breathers is
most similar to that at the transition line �=0: The only dif-
ference is an infinitesimal augmentation of the probability
p��� at infinite amplitudes ���. This reflects the formation of
a few structures with a very high amplitude, similar to the
observation in Fig. 1�a�. This high-amplitude phase at a few
lattice sites contains a significant part of the total energy. The
oscillators have a low amplitude with the same distribution
as for �=0 at almost all lattice sites. This low-amplitude
phase yields the system’s total amount of entropy and wave
action, and a part of the energy. The entropy is independent
of the energy in the regime of breathers �domain III in Fig.
7�. The entropy as a function of the energy is continuous but
not analytic at the transition.

The nature of the transition can be understood from the
weakly coupled system of Sec. II. As the sample space re-
duces to one dimension, the probability density yields the
extremal entropy s��x� , �x2��=−
0


p�x�ln p�x�dx as a function
of the first and the second moment. The distribution is grand
canonical only for �x2��2�x�2. For �x2� larger, the distribu-
tion is almost canonical, but has an infinitesimally increased
probability for an infinite amplitude. The constraint of a large
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FIG. 8. �a� Numerical power spectra nk averaged over 50 000
time units after an initial integration over 50 000 time units. The
initial conditions are waves with k=0 ��
0�, k=0.55� ���0�, and
k�� /2 ���0� with ��n�=0.3 and J=1. �b� Power spectra nk= ��
+�2 cos k�−1 for �=2.4, �=0.425; �=2.25, �=0.035; �=3.1,
�=−0.975.
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second moment �x2��2�x�2 leads to the formation of a high-
amplitude phase. The first two moments correspond to A and
E4. The coupling part E2 of the Hamiltonian with J�0 has
no influence on the probability distribution at the transition
and within the breather regime, since � vanishes. The transi-
tion is not caused by the coupling, and it exists also for weak
coupling as well as in higher dimensional lattices.

APPENDIX

1. Variation at moderate amplitudes

The expression ln q�x�+�x2 of Eq. �5� is discussed for x

x0 and for x�x0, with x0=��−m / �e���, 0
−��1, m�1,
−��O�1 /m�. x
x0: The polynomial �6� can be written as

q�x� = exp�− �x2� − �
n=m+1




�− ��nx2n/n!. �A1�

Multiplying this expression by exp��x2� and taking the loga-
rithm yields

�x2 + ln q�x� = ln�1 − exp��x2� �
n=m+1




�− �x2�n/n!� .

�A2�

The Stirling formula yields the approximation �−�x2�n /n !
��−�ex2 /n�n /�2�n. The sum in Eq. �A2� can be estimated
as

�
n=m+1




�− �x2�n/n! � �
n=m+1




�− �ex2/n�n/�2�n


 �2�m�−1/2 �
n=m+1




�x/x0�2n

=
�x/x0�2m+2

�2�m�1 − �x/x0�2�
. �A3�

For x
x0, this expression becomes small for m large. With
exp��x2��1, the argument in the logarithm in Eq. �A2� ap-
proaches one when m is large, so Eq. �A2� goes to zero.

x�x0: Replacing the polynomial q�x� by its highest order
term yields ln q�x��m ln�x2 /x0

2�. This is small compared to
−�x2=mx2 / �ex0

2�, so Eq. �A2� yields ln q�x�+�x2��x2 in the
limit of high x.

For this reason only variations �p�x� are admitted that are
zero for x�x0 �Fig. 9�a��. This choice of variations keeps the
integrand of �G=
0


�p�x���x2+ln q�x��dx equal to zero. The
region x
x0 where variations are admitted can be extended
arbitrarily by choosing a smaller parameter −�. The tail x0

x

 yields only a negligible contribution to the entropy
since p�x� is very small in this regime.

2. Relationship of � and m

The probability density �5� and �6� yields an energy e4
that depends on the Lagrange-parameter �, and on the order
m of the polynomial �6�. It is shown that the relation �7�

yields a fixed finite energy when m is large. The partition
function y=
0


exp�−�x�q�x�dx for the ansatz �6� is

ym = 

0




exp�− �x��
n=0

m

�− ��nx2n/n ! dx = �−1�
n=0

m

bn

�A4�

with bn= �−��−2�n�2n� ! /n!. Figure 9�b� shows the summands
bn over n for 0
−��1: At low n, bn decays rapidly due to
the factor �−��−2�n. At higher n, the rapidly growing factor
�2n� ! /n! prevails and bn grows. For n large, the Stirling
approximation n ! �� n

e
�n�2�n, yields bn��2��n�n with �

=−4� / �e�2�, and Euler’s number e. Equivalently, the se-
quence bn evolves by the rule

bn+1 � �2���n + 1��n+1 = �2��n�n��n�1 + 1/n���1 + 1/n�n

� bn�ne . �A5�

bn has its minimum at n��e��−1. bn grows increasingly rap-
idly for n� �e��−1 and reaches its maximum at n=m.

The partition function �A4� has major contributions only
from its two maxima at n=0 and at n=m. At the lower end,
b1�O��� is already negligibly small compared to b0=1. At
the upper end, the summands near n=m in Eq. �A4� can be
added up as

bm + bm−1 + bm−2 + . . .

� �2��m�m�1 + ��me�−1 + ��me�−2 + . . .�

� �2��m�m�me/��me − 1� . �A6�

The partition function is

ym � �−1�1 + �2��m�m�me/��me − 1�� �A7�

where only b0 and the highest summands of Eq. �A4� are
considered. Similarly, the second moment is computed as

�x2� = ym
−1


0




x2 exp�− �x�

��
n=0

m
�− �x2�n

n!
dx = ym

−1�−3�
n=0

m

�2n + 1��2n + 2�bn

� ym
−1�−3�2b0 + 4m2�bm + bm−1 + . . .��

1
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FIG. 9. �a� −�x2−ln q�x� is very small for x
�−m / �e��, and
increases quadratically at higher x. Variations �p�x� in the range x

�−m / �e�� yield only a negligible contribution to 
�p�x���x2

+ln q�x��dx. �b� bn and �2n+1��2n+2�bn over n. m=50, e4=1, �
=1, �=−0.011 65.
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� ym
−1�−3�2 + 4m2�2��m�m �me

�me − 1
� , �A8�

where b0=1 and the approximations �A6� and �2n+1��2n
+2��4m2 for n�m�1 are applied.

For �=0 or equivalently �=0, b0 is the only contribution
to Eqs. �A4� and �A6�. The second moment is �x2�
=2y−1�−3=2�−2.

For �=m−1, Eq. �A8� is dominated by the summands near
n=m. This yields the very large second moment �x2�
=ym

−1�−3�2+4m2�2e / �e−1���O�m2�.
For some � slightly smaller than m−1 it can be achieved

that ��m�m�O�m−2�. This yields contributions of the same
order from the first and the second term in Eq. �A8�. The
partition function is ym��−1 in this case, since the second
term ��m�m�O�m−2� in Eq. �A7� is negligibly small. With
�x2�=2�2e4, Eq. �A8� can be written as

2�2e4 � �−2�2 + 4m2�2��m�m �me

�me − 1
� . �A9�

This is solved approximately by

� = m−1 + m−2 ln
�1 − e��1 − �2�2e4�

�8em2
, �A10�

or ��m� of Eq. �7�. Again, this shows that � becomes small
for large m. For the first moment

�x� = ym
−1


0




xpm�x�dx

= ym
−1�−2�

n=0

m

�2n + 1�bn

� ym
−1�−2�1 + 2m�2��m�m�me/��me − 1�� , �A11�

the second term m��m�m�O�m−1� is negligible. This yields
a= �x� /���−1�−1.
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